The LPWA (Low Power Wide Area) Networks Ecosystem: 2017 - 2030 - Opportunities, Challenges, Strategies, Industry Verticals & Forecasts

Publication ID: SNS1116002
Publication Date: November 30, 2016
Pages: 239
Publisher: Signals and Systems Telecom
Countries: Global [1]

$2,500.00

Publication License Type *

- SINGLE USER LICENSE (PDF), $2,500.00
- GLOBAL LICENSE (PDF), $3,500.00

Please choose the suitable license type from above. More details are at given under tab "Report License Types" below.
Description:

Until recently, most M2M and IoT services have largely relied on licensed cellular, wireline and satellite networks for their wide area connectivity requirements. Cellular networks, in particular, have enjoyed significant success in the arena. However, for many low bandwidth IoT applications, traditional cellular networks are deemed too expensive due excessive power consumption and complex protocols that lower battery life. As a result, a number of LPWA (Low Power Wide Area) alternatives have emerged that specifically seek to address these concerns.

LPWA networks are optimized to provide wide area coverage with minimal power consumption. Typically reliant on unlicensed frequencies, LPWA devices have low data rates, long battery lives and can operate unattended for long periods of time.

Already prevalent in IoT applications such as smart metering, lighting control and parking management, LPWA networks are expected to make a significant contribution to the M2M and IoT ecosystem, with an estimated $27 Billion in service revenue by 2020.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report. Topics Covered

The report covers the following topics:
- LPWA networks ecosystem
- Market drivers and barriers
- LPWA technologies, spectrum bands and key trends
- Assessment of competing cellular, satellite, wireline and short range networking technologies
- Vertical market applications, opportunities and deployment case studies
- Regulatory landscape and standardization
- Industry roadmap and value chain
- Profiles and strategies of over 100 leading ecosystem players
- Strategic recommendations for ecosystem players
- Market analysis and forecasts from 2017 till 2030

Forecast Segmentation
Connection and service revenue forecasts are provided for the following submarkets:

Technology Submarkets
- Proprietary LPWA Technologies
- NB-IoT (Narrowband Internet of Things)
- LTE Cat-M1 (eMTC/LTE-M)
- EC-GSM-IoT (Enhanced Coverage GSM for the Internet of Things)

Vertical Markets
- Agriculture
- Asset Management & Logistics
- Automotive & Transportation
- Consumer Applications & Home Automation
- Energy & Utilities
- Healthcare
- Intelligent Buildings & Infrastructure
- Public Safety, Security & Surveillance
- Retail & Vending
- Others

Regional Markets
- Asia Pacific
- Eastern Europe
- Middle East & Africa
Key Questions Answered
The report provides answers to the following key questions:
- How big is the LPWA networks opportunity?
- What trends, challenges and barriers are influencing its growth?
- How is the ecosystem evolving by segment and region?
- What will the market size be in 2020 and at what rate will it grow?
- Which regions and submarkets will see the highest percentage of growth?
- How are smart city initiatives driving LPWA network investments?
- What are the key performance characteristics of LPWA technologies such as Sigfox, LoRa, NB-IoT, LTE Cat-M1 and EC-GSM-IoT?
- How does regulation impact the adoption of LPWA networks?
- Do cellular LPWA networks pose a threat to proprietary LPWA technologies?
- Who are the key market players and what are their strategies?
- What strategies should LPWA technology providers, mobile operators, MVNOs, aggregators, IoT platform providers and other ecosystem players adopt to remain competitive?

Key Findings
The report has the following key findings:
- Already prevalent in IoT applications such as smart metering, lighting control and parking management, LPWA networks are expected to make a significant contribution to the M2M and IoT ecosystem, with an estimated $23 Billion in service revenue by 2020.
- At present, a majority of LPWA networks are based on proprietary technologies and operate in license-exempt spectrum primarily in sub-GHz bands.
- With the recent completion of the NB-IoT, LTE Cat-M1 and EC-GSM-IoT standards by the 3GPP, mobile operators are aggressively investing in software upgrades to build their own carrier-grade LPWA networks.
- By 2020, SNS Research estimates that more than 35% of all LPWA profile IoT devices will be served by NB-IoT, LTE Cat-M1 and EC-GSM-IoT networks.
- As of Q4’2016, SNS Research estimates the cost of a typical LPWA module to be $4-18, depending on the specific technology. As LPWA network deployments mature, we expect that the cost per module can drop down to as low as $1-2 in volume quantities.

Table Of Contents:
1 Chapter 1: Introduction 14
1.1 Executive Summary 14
1.2 Topics Covered 16
1.3 Forecast Segmentation 17
1.4 Key Questions Answered 19
1.5 Key Findings 20
1.6 Methodology 21
1.7 Target Audience 22
1.8 Companies & Organizations Mentioned 23

2 Chapter 2: An Overview of LPWA Networks 26
2.1 M2M Networks & the IoT Vision 26
2.1.1 What is M2M Technology? 26
2.1.2 The IoT Vision 27
2.1.3 M2M & IoT Architecture 28
2.2 The Limitations of Traditional M2M Networking Technologies 29
2.3 What are LPWA Networks? 30
2.4 Key Characteristics of LPWA Networks 31
2.4.1 Long Range & Strong Propagation 31
2.4.2 Star Network Topology 31
2.4.3 Low Data Rates 32
2.4.4 Low Power Consumption 32
2.4.5 Battery Life Requirements 32
2.4.6 Scalability 32
2.4.7 Low Cost Modules & Infrastructure 33
2.4.8 Supplementary Features 33
2.5 Market Growth Drivers 34
2.5.1 Addressing Low Throughput IoT Use Cases 34
2.5.2 Cost Saving Potential 34
2.5.3 Energy Saving: Towards Green IoT Networks 35
2.5.4 The 2G Sunset 35
2.5.5 Regulatory Initiatives & Mandates 35
2.5.6 Interest from Vertical Markets 36
2.5.7 Commitments by Industry Giants 36
2.6 Market Barriers 36
2.6.1 Lack of Standardization 36
2.6.2 Interference Concerns 37
2.6.3 Low Revenue per Connection 37
2.6.4 Integration Complexities 37

3 Chapter 3: LPWA Networking Technologies 39
3.1 UNB (Ultra Narrow Band) 39
3.1.1 Sigfox 39
3.1.2 Telensa 40
3.2 LoRa Alliance 41
3.2.1 Semtech’s LoRA RF Platform 41
3.2.2 LoRaWAN 41
3.2.3 Link Labs’ Symphony Link 42
3.3 Weightless SIG 43
3.3.1 Weightless-W 44
3.3.2 Weightless-N 44
3.3.3 Weightless-P 45
3.4 Ingenu’s RPMA (Random Phase Multiple Access) 45
3.5 Xylem's FlexNet 46
3.6 Aclara's Synergize 47
3.7 Standardized 3GPP Technologies 48
3.7.1 LTE Cat-M1 49
3.7.2 NB-IoT (Narrow Band Internet of Things) 50
3.7.3 EC-GSM-IoT (Extended Coverage GSM for the Internet of Things) 52
3.7.4 Key Enhancements & Simplifications to Enable LPWA Operation 53
3.7.5 The Future: 5G NB-IoT 54
3.8 IEEE 802.11 ah & af 54
3.9 Spectrum Options for LPWA Networks 55
3.9.1 ISM (Industrial, Scientific, and Medical Radio) Bands 55
3.9.2 TVWS (TV White Spaces) 55
3.9.3 Licensed Spectrum 56
3.10 Competing M2M Networking Technologies 56
3.10.1 Conventional Cellular Technologies 56
3.10.1.1 2G & 3G 56
3.10.1.2 LTE 57
3.10.1.3 5G 58
3.10.2 Satellite Communications 58
3.10.3 Wireline Networks 58
3.10.4 Short Range Networks 58
3.10.4.1 Wi-Fi 58
3.10.4.2 Bluetooth 59
3.10.4.3 ZigBee 59
3.10.5 Others 59

4 Chapter 4: Vertical Market Applications, Opportunities & Case Studies 60
4.1 Agriculture 60
4.1.1 Precision Agriculture 60
4.1.2 Livestock Management 60
4.1.3 Agricultural Equipment Monitoring 61
4.11 LPWA Deployment Case Studies 72
4.11.1 AT&T: Targeting New IoT Markets with LTE Cat-M1 72
4.11.2 BT: Creating the UK's First IoT Enabled Smart City 73
4.11.3 Enevo: Waste Logistics Optimization with LoRaWAN 73
4.11.4 KT Corporation & LG-Uplus: Collaborating to Accelerate the Adoption of NB-IoT 74
4.11.5 Orange: Capitalizing on Multiple LPWA Technologies 75
4.11.6 Securitas: LPWA Powered Home Security Monitoring 76
4.11.7 Senet: Optimizing Fuel Delivery with LoRaWAN 76
4.11.8 Smartevo Water: Enabling Smart Metering with Sigfox 77
4.11.9 Telensa: Powering Smart Parking & Street Lighting with UNB Technology 77
4.11.10 The Things Network: Crowdsourcing IoT Networks 78
4.11.11 Vodafone Group: Establishing a Global NB-IoT Network 79

5 Chapter 5: Regulatory Landscape 81
5.1 3GPP (3rd Generation Partnership Project) 81
5.1.1 Release 12 81
5.1.2 Release 13 81
5.1.3 Release 14 & Beyond 82
5.2 ETSI (European Telecommunications Standards Institute) 82
5.2.1 IoT LTN (Low Throughput Networks) Initiative 83
5.3 LoRa Alliance 84
5.4 Weightless SIG 85
5.5 IEEE (Institute of Electrical and Electronics Engineers) 86
5.6 Wireless IoT Forum 87
5.7 GSMA 88
5.7.1 Mobile IoT (LPWA) Initiative 88
5.7.2 NB-IoT Forum 88
5.7.3 LTE-M Task Force 89
5.7.4 EC-GSM-IoT Group 90

6 Chapter 6: Industry Roadmap & Value Chain 91
6.1 Industry Roadmap 91
6.1.1 2017 - 2020: Initial Rollouts to Support Smart City Applications 91
6.1.2 2020 - 2025: Growing Proliferation of NB-IoT and Licensed LPWA Technologies 92
6.1.3 2025 - 2030 & Beyond: Cannibalizing Legacy Cellular M2M Connections 92
6.2 Value Chain 93
6.2.1 Enabling Technology 93
6.2.1.1 Hardware Providers 93
6.2.1.2 Software Providers 94
6.2.2 Connectivity 94
6.2.2.1 Mobile Operators 94
6.2.2.2 MVNOs & Aggregators 94
6.2.3 Service Enablement 94
6.2.3.1 CDP (Connected Device Platform) Providers 95
6.2.3.2 Application Platform Providers 95
6.2.4 Vertical Solutions 95
6.2.4.1 System Integrators 95
6.2.4.2 Vertical Market Specialists 95
6.2.5 Other Ecosystem Players 95
6.2.5.1 Cloud Platform Providers 96
6.2.5.2 Big Data & Analytics Specialists 96
6.2.5.3 Supplementary Service Providers 96

7 Chapter 7: Key Market Players 97
7.1 Accellus Communication Networks 97
7.2 Aclara Technologies 98
7.3 Actility 99
7.4 Adeunis RF 100
7.5 Aerea 101
7.6 Altair Semiconductor 102
7.7 AM Telecom 103
7.8 AMBER Wireless 104
7.9 Arkessa 105
7.10 Arqiva 106
7.11 AT&T 107
7.12 Atim 108
7.13 Atmel Corporation 109
7.14 Augtek 110
7.15 Bouygues Telecom 111
7.16 BT Group 112
7.17 Cellnex Telecom 113
7.18 CG-Wireless 114
7.19 Cisco Systems 115
7.20 Digi International 116
7.21 DT (Deutsche Telekom) 117
7.22 Du (Emirates Integrated Telecommunications Company) 118
7.23 Elster Group 119
7.24 Encore Networks 120
7.25 Endetec Homerider Systems 121
7.26 Eolane 122
7.27 Ericsson 123
7.28 Etisalat Group 124
7.29 Eutelsat 125
7.30 FLASHNET 126
7.31 Gemalto 127
7.32 Helium Systems 128
7.33 Hope RF (Hope Microelectronics) 129
7.34 Huawei 130
7.35 IBM 131
7.36 IMST 132
7.37 Ingenu 133
7.38 Intel Corporation 134
7.39 KCCS (Kyocera Communication Systems) 135
7.40 KDDI Corporation 136
7.41 Kerlink 137
7.42 KPN 138
7.43 LG Innotek 139
7.44 Libelium 140
7.45 Link Labs 141
7.46 M2COMM (M²Communication) 143
7.47 M2M Spectrum Networks 144
7.48 MediaTek 145
7.49 Microchip Technology 146
7.50 Multi-Tech Systems 147
7.51 Nemeus 148
7.52 Nettrotter 149
7.53 NimbeLink 150
7.54 NNNCo (National Narrowband Network Communications) 151
7.55 Nokia 152
7.56 NTT DoCoMo 153
7.57 Nwave Technologies 154
7.58 ON Semiconductor 155
7.59 Orange 156
7.60 OrbiWise 157
7.61 Oviphone 158
7.62 PicoWAN 159
7.63 Plextek 160
7.64 Proximus Group 161
7.65 Qowiso 162
7.66 Qualcomm 163
7.67 Quectel Wireless Solutions 164
7.68 Radiocrafts 165
7.69 Sagemcom 166
7.70 Samsara Networks 167
7.71 Samsung Electronics 168
7.72 Semtech Corporation 169
7.73 Senet 170
7.74 Sequans Communications 171
7.75 Sierra Wireless 172
7.76 Sigfox 173
7.77 Silicon Labs (Silicon Laboratories) 174
7.78 SimpleCell Networks 175
7.79 Singtel Group 176
7.80 SK Telecom 177
7.81 SoftBank Group 178
7.82 Stream Technologies 179
7.83 Swisscom 180
7.84 Tata Communications 181
7.85 TechPLEX 182
7.86 Tele2 183
7.87 Telecom Design 184
7.88 Telecom Italia 185
7.89 Telefónica Group 186
7.90 Telensa 187
7.91 Telit Communications 188
7.92 Telkom SA Group 189
7.93 Telstra 190
7.94 The Things Network 191
7.95 TI (Texas Instruments) 192
7.96 Ubik 193
7.97 U-blox 194
7.98 Verizon Communications 195
7.99 Vodafone Group 196
7.100 WAVIoT 197
7.101 WNC (Wistron NeWeb Corporation) 198
7.102 Xirgo Technologies 199
7.103 Xylem 200
7.104 ZiFiSense 201

8 Chapter 8: Market Analysis & Forecasts 202
9.8 Impact on Mobile Operators: Opportunities & Challenges 234
9.9 Future Prospects for Proprietary LPWA Technologies 235
9.1 How Are Vendors Differentiating Their Offerings? 236
9.11 Strategic Recommendations 237
9.11.1 LPWA Technology Providers 237
9.11.2 Other Enabling Technology Providers 237
9.11.3 Mobile Operators 237
9.11.4 MVNOs & Aggregators 238
9.11.5 IoT Platform Providers 238
9.11.6 System Integrators & Vertical Market Specialists 239

List of Figures

Figure 1: The IoT Vision 29
Figure 2: M2M & IoT Network Architecture 30
Figure 3: Global Wide Area M2M Connections by Technology: 2017 - 2030 (Millions) 32
Figure 4: Telensa’s Smart Lighting Solution 42
Figure 5: LoRaWAN Architecture 44
Figure 6: Comparison of Weightless Open LPWA Standards 45
Figure 7: Key Performance Characteristics of 3GPP LPWA Technologies 50
Figure 8: NB-IoT Deployment Options 53
Figure 9: LPWA Networks Industry Roadmap 93
Figure 10: LPWA Networks Value Chain 95
Figure 11: Global LPWA Network Connections: 2017 - 2030 (Millions) 204
Figure 12: Global LPWA Network IoT Service Revenue: 2017 - 2030 ($ Billion) 205
Figure 13: Global LPWA Network IoT Service Revenue by Submarket: 2017 - 2030 ($ Billion) 205
Figure 14: Global LPWA Network Connectivity Revenue: 2017 – 2030 ($ Billion) 206

Figure 15: Global LPWA Network IoT Application Service Revenue: 2017 – 2030 ($ Billion) 206

Figure 16: Global LPWA Network Connections by Technology: 2017 – 2030 (Millions) 207

Figure 17: Global LPWA Network IoT Service Revenue by Technology: 2017 – 2030 ($ Billion) 207

Figure 18: Global Proprietary LPWA Network Connections: 2017 – 2030 (Millions) 208

Figure 19: Global Proprietary LPWA Network IoT Service Revenue: 2017 – 2030 ($ Billion) 208

Figure 20: Global NB-IoT Network Connections: 2017 – 2030 (Millions) 209

Figure 21: Global NB-IoT Network IoT Service Revenue: 2017 – 2030 ($ Billion) 209

Figure 22: Global LTE Cat-M1 Network Connections: 2017 – 2030 (Millions) 210

Figure 23: Global LTE Cat-M1 Network IoT Service Revenue: 2017 – 2030 ($ Billion) 210

Figure 24: Global EC-GSM-IoT Network Connections: 2017 – 2030 (Millions) 211

Figure 25: Global EC-GSM-IoT Network IoT Service Revenue: 2017 – 2030 ($ Billion) 211

Figure 26: Global LPWA Network Connections by Vertical: 2017 – 2030 (Millions) 212

Figure 27: Global LPWA Network IoT Service Revenue by Vertical: 2017 – 2030 ($ Billion) 212

Figure 28: Global LPWA Network Connections in Agriculture: 2017 – 2030 (Millions) 213

Figure 29: Global LPWA Network IoT Service Revenue in Agriculture: 2017 – 2030 ($ Billion) 213

Figure 30: Global LPWA Network Connections in Asset Management & Logistics: 2017 – 2030 (Millions) 214

Figure 31: Global LPWA Network IoT Service Revenue in Asset Management & Logistics: 2017 – 2030 ($ Billion) 214

Figure 32: Global LPWA Network Connections in Automotive & Transportation: 2017 – 2030 (Millions) 215
Figure 33: Global LPWA Network IoT Service Revenue in Automotive & Transportation: 2017 – 2030 ($ Billion) 215

Figure 34: Global LPWA Network Connections in Consumer Applications & Home Automation: 2017 – 2030 (Millions) 216

Figure 35: Global LPWA Network IoT Service Revenue in Consumer Applications & Home Automation: 2017 – 2030 ($ Billion) 216

Figure 36: Global LPWA Network Connections in Energy & Utilities: 2017 – 2030 (Millions) 217

Figure 37: Global LPWA Network IoT Service Revenue in Energy & Utilities: 2017 – 2030 ($ Billion) 217

Figure 38: Global LPWA Network Connections in Healthcare: 2017 – 2030 (Millions) 218

Figure 39: Global LPWA Network IoT Service Revenue in Healthcare: 2017 – 2030 ($ Billion) 218

Figure 40: Global LPWA Network Connections in Intelligent Buildings & Infrastructure: 2017 – 2030 (Millions) 219

Figure 41: Global LPWA Network IoT Service Revenue in Intelligent Buildings & Infrastructure: 2017 – 2030 ($ Billion) 219

Figure 42: Global LPWA Network Connections in Public Safety, Security & Surveillance: 2017 – 2030 (Millions) 220

Figure 43: Global LPWA Network IoT Service Revenue in Public Safety, Security & Surveillance: 2017 – 2030 ($ Billion) 220

Figure 44: Global LPWA Network Connections in Retail & Vending: 2017 – 2030 (Millions) 221

Figure 45: Global LPWA Network IoT Service Revenue in Retail & Vending: 2017 – 2030 ($ Billion) 221

Figure 46: Global LPWA Network Connections in Other Verticals: 2017 – 2030 (Millions) 222

Figure 47: Global LPWA Network IoT Service Revenue in Other Verticals: 2017 – 2030 ($ Billion) 222
Companies Mentioned:

1. 3GPP (3rd Generation Partnership Project)
2. Accellus Communication Networks
3. Aclara Technologies
4. Actility
5. Adeunis RF
6. Aerea
7. Altair Semiconductor
8. Altera Corporation
9. AM Telecom
10. AMBER Wireless
11. Archos
12. Arkessa
13. ARM Holdings
14. Arqiva
15. AT&T
16. AT&T Mobility
17. Atim
18. Atmel Corporation
19. Augtek
20. Bouygues Telecom
21. BT Group
22. Cellnex Telecom
23. CG-Wireless
24. Cisco Systems
25. Coronis Systems
26. Digi International
27. DT (Deutsche Telekom)
28. Du (Emirates Integrated Telecommunications Company)
29. EI Towers
30. Elster Group
31. Encore Networks
32. Endetec Homerider Systems
33. Enevo
34. Eolane
35. Ericsson
36. Etisalat Group
37. ETSI (European Telecommunications Standards Institute)
38. Eutelsat
39. FLASHNET
40. Gemalto
41. GSMA
42. Helium Systems
43. Hope RF (Hope Microelectronics)
44. Huawei
45. IBM
46. IEEE (Institute of Electrical and Electronics Engineers)
47. IMST
48. Ingenu
49. INS Group
50. Intel Corporation
51. KCCS (Kyocera Communication Systems)
52. KDDI Corporation
53. Kerlink
54. Kolon Sport
55. KPN
56. Kyocera Corporation
57. LG Innotek
58. LG Uplus
59. Libelium
60. Link Labs
61. LoRa Alliance
62. M2COMM (M²Communication)
63. M2M Spectrum Networks
64. MediaTek
65. Microchip Technology
66. MTS (Mobile TeleSystems)
67. Multi-Tech Systems
68. Nemeus
69. Nettrotter
70. NimbeLink
71. NNNCo (National Narrowband Network Communications)
72. Nokia
73. Nokia Networks
74. Nokia Technologies
75. NTT DoCoMo
76. Nwave Technologies
77. NXP Semiconductors
78. Objenious
79. ON Semiconductor
80. Orange
81. OrbiWise
82. Oviphone
83. PicoWAN
84. Plextek
85. Proximus Group
86. Qowiso
87. Qualcomm
88. Quectel Wireless Solutions
89. Radiocrafts
90. Sagemcom
91. Samsara Networks
92. Samsung Electronics
93. Securitas
94. Semtech Corporation
95. Senet
96. Sensus
97. Sequans Communications
98. Sierra Wireless
99. Sigfox
100. Silicon Labs (Silicon Laboratories)
101. SimpleCell Networks
102. Singtel Group
103. SK Telecom
104. Smarteo Water
105. SoftBank Group
106. Sony Corporation
107. Sprint Corporation
108. Stream Technologies
109. Swisscom
110. Tata Communications
111. Tata Group
112. TechPLEX
113. Tele2
114. Telecom Design
115. Telecom Italia
116. Telefónica Group
117. Telensa
118. Telit Communications
119. Telkom SA Group
120. Telstra
121. The Things Industries
122. The Things Network
123. TI (Texas Instruments)
124. TIM (Telecom Italia Mobile)
125. Ubiik
126. U-blox
127. Verizon Communications
128. **Verizon Wireless**
129. **Vodafone Group**
130. **WAVIoT**
131. **Weightless SIG**
132. **Wireless IoT Forum**
133. **WNC (Wistron NeWeb Corporation)**
134. **Xirgo Technologies**
135. **Xylem**
136. **ZiFiSense**

License Types:

Single User License (PDF)

- This license allows for use of a publication by one person.
- This person may print out a single copy of the publication.
- This person can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.
- This person cannot share the publication (or any information contained therein) with any other person or persons.
- Unless an Enterprise License is purchased, a Single User License must be purchased for every person that wishes to use the publication within the same organization.
- Customers who infringe these license terms are liable for a Global license fee.

Site License (PDF)

- This license allows for use of a publication by all users within one corporate location, e.g. a regional office.
- These users may print out a single copy of the publication.
- These users can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.
- These users cannot share the publication (or any information contained therein) with any other person or persons outside the corporate location for which the publication is purchased.
- Unless an Enterprise License is purchased, a Site User License must be purchased for every corporate location by an organization that wishes to use the publication within the same organization.
- Customers who infringe these license terms are liable for a Global license fee.
Global License (PDF)*

- This license allows for use of a publication by unlimited users within the purchasing organization e.g. all employees of a single company.
- Each of these people may use the publication on any computer, and may print out the report, but may not share the publication (or any information contained therein) with any other person or persons outside of the organization.
- These employees of purchasing organization can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.

*If Applicable.

Links
[5] https://www.marketresearchreports.com/3g-wimax
[6] https://www.marketresearchreports.com/4g-lte